# Difference between revisions of "Talk:Experience"

(→Erratic formula: new section) |
|||

Line 268: | Line 268: | ||

Can someone modify the erratic and the fluctuating part of experience? I want to understand it like all the other ones! |
Can someone modify the erratic and the fluctuating part of experience? I want to understand it like all the other ones! |
||

+ | |||

+ | :I think those formulas should be explained. It would help quite a lot of people who want to understand those formulas but haven't seen them before.[[User:Dullstar|Dullstar]] 02:16, 26 June 2010 (UTC) |
||

## Revision as of 02:16, 26 June 2010

Erratic (600000) E = -1/50*l^4 + 2*l^3 for level<=50

http://www.math.miami.edu/~jam/azure/forum/tuff/ultimatebb.php?ubb=get_topic;f=1;t=001260

It's mentioned in the thread that level 45 does not work for that. Level 45 is 100273, not 100237. Sheep 16:42, 21 Feb 2005 (UTC)

Nevermind the previous message, I figured it out myself. Sheep 18:09, 21 Feb 2005 (UTC)

## Contents

- 1 Simplify the formulas
- 2 Modify this!
- 3 Color-Coded
- 4 Organize Pokémon
- 5 ???
- 6 Hmm...
- 7 Pokémon Gold/Silver Version ROM - Hack-O-Matic - "Secret" Experience functions
- 8 List of base experence yeald
- 9 Negative EXP
- 10 Experience gain in battle
- 11 Switching???
- 12 Errors with formulas?
- 13 Understanding the formulas
- 14 Erratic formula

## Simplify the formulas

Was that copied from matlab or something? It can be simplified... ((0.814 - 0.02*(((n - 69) / 3) - (((n - 69) / 3) modulo 1)) - ep(((n - 69) modulo 3))(n^3) ((0.814 - 0.02*(((n - 69) / 3) - float_part((n - 69) / 3) ) - ep(((n - 69) modulo 3))(n^3) ((0.814 - 0.02*( int((n - 69) / 3) ) - ep(((n - 69) modulo 3))(n^3) ((0.814 - 0.02*( int(n/3 - 23) ) - ep(((n - 69) modulo 3))(n^3) ((0.814 + 0.46 - 0.02*( int(n/3) ) - ep(((n - 69) modulo 3))(n^3) int( ( 1.274 - 0.02*(int(n/3)) - ep(n%3) ) * (n^3) ) That would be easier to read.

2*(1 - 0.01n)*(n3) = int( 2n3 - 0.02n4 )

( 1 - ((n - 50)*0.01) ) * (n^3) = int( 1.5n3 - 0.01n4 )

(1.6 - 0.01n) * (n3) = int( 1.6n3 - 0.01n4 )

Qgpr03:05, 01 Mar 2005

I really want to avoid using expressions that are not standard math notation. I don't even know if there's a way to represent some integer rounding using standard math notation, just some pseudo-code, that's why I stuck mod 1 subtraction in there. My plan was to simplify/clean it up once TeX was implemented on bulbapedia.

In the meanwhile you can simplify them. Just keep "mod" or "modulo" instead of "%" and avoid "int()." Sheep 20:20, 1 Mar 2005 (UTC)

The big problem is that when I first read that I got confused. No person that would bother to understand that formula wouldn't know how to program anyways, to represent that rounding you use ||x|| I think, maximum integer, unless I got the symbol wrong, long time I don't touch math.
I'll leave that formula but also add the simplification for anyone that wants someting simplier to read.
I will also simplify your standard math formulas, but won't add the ||x|| because I am not sure if its the right symbol, those - 69 can be taken out of modulo since they will be equal to zero.
Qgpr 20:03, 5 Mar 2005 (GMT-5)

- |x| is modul
**us**- gives the absolute value of function, i.e. |-0.5| = 0.5. Modul**o**is simply represented as*mod*in mathematics. Anyway, while we do not have TeX at the moment, you can try this instead - leave the original math formula as a <!-- COMMENT -->, and copy the image from Wikipedia (it will generate the image on preview, so you can download that and reupload it here. Don't overdo it of course.)

- ||x|| ( double | ) is what I was taught here at college, but I guess is not an standard, however I found what it seems is the standard, and used the UTF code to show it. However <*pre> is not happy with <*sub>, you should find a way around because mine doesn't look that good. By the way it was "greatest integer" not maximum, problems for using a direct translation. Qgpr 22:16, 5 Mar 2005 (GMT-5)

First shot at a TeX markup image. Using

\begin{math} b \star x \rightarrow \frac{b}{x} - (\frac{b}{x}\;mod\;1) \end{math} \addvspace{.2cm} \begin{math} e(n) = \left\{ \begin{array}{clrr} n^3(\frac{100 - n}{50}); & 0 < n \leq 50 \\* n^3(\frac{150 - n}{100}); & 51 \leq n \leq 68 \\* n^3(1.274 - \frac{1}{50}(n\star3) - p(n\;mod\;3)); & 69 \leq n \leq 98 \\* n^3(\frac{160 - n}{100}); & 99 \leq n \leq 100 \\* \end{array} \right\} \end{math} \addvspace{.2cm} \begin{math} p(x) = \left\{ \begin{array}{clrr} 0.000; & x = 0 \\* 0.008; & x = 1 \\* 0.014; & x = 2 \\* \end{array} \right\} \end{math}

I came up with

Kind of cramped. Does it meet the approval of you two? Looking for revisions before I even post it. Especially since I forgot how to properly represent a custom operator (\star). Is that how? Sheep 03:32, 6 Mar 2005 (UTC)

This seems better:

\begin{equation} E(n) = \left\{ \begin{array}{ll} \frac{n^{3} \left(100 - n\right)}{50}, & \textrm{if $0 < n \leq 50$} \\ \frac{n^{3} \left(150 - n\right)}{100}, & \textrm{if $51 < n \leq 68$} \\ n^{3} \left(1.274 - \frac{1}{50}\left\lfloor\frac{n}{3}\right\rfloor -p\left(n \bmod 3\right)\right), & \textrm{if $69 < n \leq 98$} \\ \frac{n^{3} \left(160 - n\right)}{100}, & \textrm{if $99 < n \leq 100$} \end{array}\right. \end{equation} \begin{equation} p(m) = \left\{ \begin{array}{ll} 0.000, & \textrm{if $m = 0$} \\ 0.008, & \textrm{if $m = 1$} \\ 0.014, & \textrm{if $m = 2$} \end{array}\right. \end{equation}

File:Erratic experience levels equation 1.png

File:Erratic experience levels equation 2.png
But when I tested it on Wikipedia, there were a few problems, so if we do get around to installing Texvc, we'll have to go hammer those problems out. Also, I'd appreciate it if we could find the exact fractions for those decimalised numbers - after all, the computer works in binary, not decimal - hence we won't have 0.008, we might instead have 523/65536 (or maybe 8/1000, but the result would still be stored as a binary fraction) - 刘 (劉) 振霖 07:22, 6 Mar 2005 (UTC)

I updated texerratic.png up there with something that looks more like yours. I didn't use Wikipedia for mine, I was using TeXnicCenter. I think the decimals are all right how they are, because they actually are more correct. I don't know exactly how the games handle decimal arithmetic, but it appears that the formulas use values accurate to 3 decimal places. (525/65536) or (523/65536) are not exactly 0.008, and if you put in those values, you'll get numbers that are off (I got about 6 points off for level 70). Sheep 13:47, 6 Mar 2005 (UTC)

Mmm. Since the experience points have to be accurate to about 7sf - I think the fractions should therefore be accurate to 7sf as well. But it might well be that they did use integer multiplication + division (× 8 ÷ 1000) rather than a simpler constant floating point multiplication (× (1 + 402653/2^{24}) × 2^{-7}) - which is approximately how accurate a single-precision IEEE 754 binary fraction is. Funnily enough, IEEE 754 single-precision fractions are accurate to approx 7sf (without exponentiation) by defintion (this one is 0.008 correct to 11sf)). - 刘 (劉) 振霖 14:40, 6 Mar 2005 (UTC)

Hmm. I just learned from Meowth that the game simply stores the values for these as constants in the game, so the fractions are just best-fit and the formula is not used in-game - 刘 (劉) 振霖 14:44, 6 Mar 2005 (UTC)

So we need to reach a conclusion. There will be a note added that says these values are stored in the game as constants, not calculated. The formulas, I guess, do not have to be specific to any system of number storage now, so are we saying that the decimal constants are acceptable? Sheep 15:04, 6 Mar 2005 (UTC)

### quick question

Why does Level redirect here? An even better question is, why does this page link to Level, thus linking back to itself? --greengiant

Sorry my reply is formatted wrong, I don't know how to do it normally yet. Anyway, the last time I checked, Level is its own, seperate article. Maybe they fixed the problem you saw before. {{SUBST:Superbreeder]] What's up? 23:30, 16 October 2008 (UTC)

## Modify this!

Can someone modify the erratic and the fluctuating part of experience? I want to understand it like all the other ones!

- I think those formulas should be explained. It would help quite a lot of people who want to understand those formulas but haven't seen them before.Dullstar 02:16, 26 June 2010 (UTC)

## Color-Coded

I color-coded the exp type descriptions to more-or-less match the colors used on the graph. I did this to make it easier to distinguish them from eachother. I wonder where I can find the look-up table in the game, I bet I can simplify those two honking large piecewise formulas. Twigpi 15:51, 20 November 2007 (UTC)

- See http://www.upokecenter.com/games/rs/guides/exptable.html. The "1,050,000" in one of the top columns is a typo (should be "1,059,860"). At Level 1, the Experience is always "0" (here, they have it at "1"). Ultraflame 22:53, 10 December 2007 (UTC)

## Organize Pokémon

I really think there should be either a list of Pokémon by experience types or a category for each type. You can find out on each particular Pokémon's page, but there is no way to find Pokémon based on their experience type. Cheesus Is Lord 13:23 23 January 2008

- Here is the whole list. Someone could modify it and put it into the main article.

600000 Nincada/Ninjask/Shedinja Volbeat Swablu/Altaria Zangoose Lileep/Cradily Anorith/Armaldo Feebas/Milotic Clamperl/Huntail/Gorebyss Cranidos/Rampardos Shieldon/Bastiodon Finneon/Lumineon 800000 Cleffa/Clefairy/Clefable Igglybuff/Jigglypuff/Wigglytuff Happiny/Chansey/Blissey Ledyba/Ledian Spinarak/Ariados Togepi/Togetic/Togekiss Marill/Azumarill Aipom/Ambipom Misdreavus/Mismagius Snubbull/Granbull Corsola Delibird Smeargle Skitty/Delcatty Mawile Spoink/Grumpig Spinda Lunatone Solrock Shuppet/Banette Duskull/Dusclops/Dusknoir Chingling/Chimecho Luvdisc Glameow/Purugly 1000000 Caterpie/Metapod/Butterfree Weedle/Kakuna/Beedrill Rattata/Raticate Spearow/Fearow Ekans/Arbok Pichu/Pikachu/Raichu Sandshrew/Sandslash Vulpix/Ninetales Zubat/Golbat/Crobat Paras/Parasect Venonat/Venomoth Diglett/Dugtrio Meowth/Persian Psyduck/Golduck Mankey/Primeape Ponyta/Rapidash Slowpoke/Slowbro/Slowking Magnemite/Magneton/Magnezone Farfetch'd Doduo/Dodrio Seel/Dewgong Grimer/Muk Onix/Steelix Drowzee/Hypno Krabby/Kingler Voltorb/Electrode Cubone/Marowak Tyrogue/Hitmonlee/Hitmonchan/Hitmontop Lickitung/Lickilicky Koffing/Weezing Tangela/Tangrowth Kangaskhan Horsea/Seadra/Kingdra Goldeen/Seaking Mime Jr./Mr. Mime Scyther/Scizor Smoochum/Jynx Elekid/Electabuzz/Electivire Magby/Magmar/Magmortar Ditto Eevee/Vaporeon/Jolteon/Flareon/Espeon/Umbreon/Leafeon/Glaceon Porygon/Porygon2/Porygon-Z Omanyte/Omastar Kabuto/Kabutops Sentret/Furret Hoothoot/Noctowl Natu/Xatu Bonsly/Sudowoodo Yanma/Yanmega Wooper/Quagsire Unown Wobbuffet Girafarig Dunsparce Qwilfish Teddiursa/Ursaring Slugma/Magcargo Remoraid/Octillery Phanpy/Donphan Poochyena/Mightyena Zigzagoon/Linoone Wurmple/Silcoon/Beautifly/Cascoon/Dustox Wingull/Pelipper Surskit/Masquerain Nosepass/Probopass Meditite/Medicham Plusle Minun Numel/Camerupt Torkoal Barboach/Whiscash Baltoy/Claydol Castform Snorunt/Glalie/Froslass Bidoof/Bibarel Burmy/Wormadam/Mothim Pachirisu Buizel/Floatzel Cherubi/Cherrim Shellos/Gastrodon Buneary/Lopunny Stunky/Skuntank Bronzor/Bronzong Spiritomb Croagunk/Toxicroak Rotom 1059860 Bulbasaur/Ivysaur/Venusaur Charmander/Charmeleon/Charizard Squirtle/Wartortle/Blastoise Pidgey/Pidgeotto/Pidgeot Nidoran-F/Nidorina/Nidoqueen Nidoran-M/Nidorino/Nidoking Oddish/Gloom/Vileplume/Bellossom Poliwag/Poliwhirl/Poliwrath/Politoed Abra/Kadabra/Alakazam Machop/Machoke/Machamp Bellsprout/Weepinbell/Victreebel Geodude/Graveler/Golem Gastly/Haunter/Gengar Mew Chikorita/Bayleef/Meganium Cyndaquil/Quilava/Typhlosion Totodile/Croconaw/Feraligatr Mareep/Flaaffy/Ampharos Hoppip/Skiploom/Jumpluff Sunkern/Sunflora Murkrow/Honchkrow Gligar/Gliscor Shuckle Sneasel/Weavile Celebi Treecko/Grovyle/Sceptile Torchic/Combusken/Blaziken Mudkip/Marshtomp/Swampert Lotad/Lombre/Ludicolo Seedot/Nuzleaf/Shiftry Taillow/Swellow Whismur/Loudred/Exploud Sableye Budew/Roselia/Roserade Trapinch/Vibrava/Flygon Cacnea/Cacturne Kecleon Absol Spheal/Sealeo/Walrein Turtwig/Grotle/Torterra Chimchar/Monferno/Infernape Piplup/Prinplup/Empoleon Starly/Staravia/Staraptor Kricketot/Kricketune Shinx/Luxio/Luxray Combee/Vespiquen Chatot Riolu/Lucario Shaymin 1250000 Growlithe/Arcanine Tentacool/Tentacruel Shellder/Cloyster Exeggcute/Exeggutor Rhyhorn/Rhydon/Rhyperior Staryu/Starmie Pinsir Tauros Magikarp/Gyarados Lapras Aerodactyl Munchlax/Snorlax Articuno Zapdos Moltres Dratini/Dragonair/Dragonite Mewtwo Chinchou/Lanturn Heracross Swinub/Piloswine/Mamoswine Mantyke/Mantine Skarmory Houndour/Houndoom Stantler Miltank Raikou Entei Suicune Larvitar/Pupitar/Tyranitar Lugia Ho-Oh Ralts/Kirlia/Gardevoir/Gallade Slakoth/Vigoroth/Slaking Aron/Lairon/Aggron Electrike/Manetric Carvahna/Sharpedo Tropius Relicanth Bagon/Shelgon/Salamence Beldum/Metang/Metagross Regirock Regice Registeel Latias Latios Kyogre Groudon Rayquaza Jirachi Deoxys Gible/Gabite/Garchomp Hippopotas/Hippowdon Skorupi/Drapion Carnivine Snover/Abomasnow Uxie Mesprit Azelf Dialga Palkia Heatran Regigigas Giratina Cresselia Phione Manaphy Darkrai Arceus 1640000 Shroomish/Breloom Makuhita/Hariyama Illumise Gulpin/Swalot Wailmer/Wailord Seviper Corphish/Crawdaunt Drifloon/Drifblim

- Ultraflame 20:45, 23 January 2008 (UTC)

I like this idea and think it would be useful. Anyone else agree? Eric the espeon 19:43, 25 November 2008 (UTC)

- Yes, but I don't know if it belongs on this page. We could create categories, but I think I like the idea of another page better, like List of Pokémon by experience requirement, or something. — Laoris
_{(Blah)}19:52, 25 November 2008 (UTC)

Makes sense, and link to that list from here? Eric the espeon 18:19, 4 December 2008 (UTC)

## ???

If the formula returns a decimal, is the result rounded up or down? --S^{h}i_{n}y ^{N}o_{c}t^{o}w_{l} 15:39, 26 May 2008 (UTC)

- Always rounded down, I believe. Ultraflame 22:59, 26 May 2008 (UTC)

## Hmm...

Does anyone else think that a chart that lists the experience needed to reach each level in an experience group would be a good addition to this page? ** TTEchidna** 05:20, 1 July 2008 (UTC)

- yes MathijsP 07:22, 1 July 2008 (UTC)
- I added the charts, but, as I had a computer program generate them, I haven't been able to check the piecewise ones yet. It would be good if someone else could check the piecewise functions ("erratic" and "fluctuating") to make sure they're correct. --S
^{h}i_{n}y^{N}o_{c}t^{o}w_{l}00:15, 29 September 2008 (UTC)- the "Erratic" one is messed up. lvl 98 is 1.2 million, and lvl 99 is under 600,000. also, thats a lot of text, so, i added the show/hide ability. --
**MAGNEDETH**00:24, 29 September 2008 (UTC)- It's still messed up. Can you fix it please? --S
^{h}i_{n}y^{N}o_{c}t^{o}w_{l}00:27, 29 September 2008 (UTC)- i dont know how to fix it, i just added the show/hide things. im just noting its not right. you said you had a computer do it. try again? --
**MAGNEDETH**00:29, 29 September 2008 (UTC)- The formula for Level 98 comes out to 583539, which is correct. Ultraflame 23:05, 29 September 2008 (UTC)

- i dont know how to fix it, i just added the show/hide things. im just noting its not right. you said you had a computer do it. try again? --

- It's still messed up. Can you fix it please? --S

- the "Erratic" one is messed up. lvl 98 is 1.2 million, and lvl 99 is under 600,000. also, thats a lot of text, so, i added the show/hide ability. --

- I added the charts, but, as I had a computer program generate them, I haven't been able to check the piecewise ones yet. It would be good if someone else could check the piecewise functions ("erratic" and "fluctuating") to make sure they're correct. --S

## Pokémon Gold/Silver Version ROM - Hack-O-Matic - "Secret" Experience functions

I'm sure someone else has noticed that if you use the ROM hack tool Hack-O-Matic to open a Pokémon Gold/Silver ROM and edit Pokémon, there will be eight "experience gradient" choices for each Pokémon as opposed to the four that were actually used in Generation II. I've figured out three of the four "secret" functions, and due to a glitch in Hack-O-Matic I can't examine the fourth one.

Hack-O-Matic displays the eight experience functions as eight "types" (the numbers go from Level 2 to 100):

## 1Formula is 0.25n^3 + 15n^2 + 205n – 107 |

365 649 969 1324 1717 2148 2621 3135 3693 4295 4945 5642 6389 7186 8037 8941 9901 10917 11993 13128 14325 15584 16909 18299 19757 21283 22881 24550 26293 28110 30005 31977 34029 36161 38377 40676 43061 45532 48093 50743 53485 56319 59249 62274 65397 68618 71941 75365 78893 82525 86265 90112 94069 98136 102317 106611 111021 115547 120193 124958 129845 134854 139989 145249 150637 156153 161801 167580 173493 179540 185725 192047 198509 205111 211857 218746 225781 232962 240293 247773 255405 263189 271129 279224 287477 295888 304461 313195 322093 331155 340385 349782 359349 369086 378997 389081 399341 409777 420393 |

### 2

Same as Fifth Type

## 30.75n^3 + 10n^2 – 30 |

16 80 178 313 492 717 994 1326 1720 2178 2706 3307 3988 4751 5602 6544 7584 8724 9970 11325 12796 14385 16098 17938 19912 22022 24274 26671 29220 31923 34786 37812 41008 44376 47922 51649 55564 59669 63970 68470 73176 78090 83218 88563 94132 99927 105954 112216 118720 125468 132466 139717 147228 155001 163042 171354 179944 188814 197970 207415 217156 227195 237538 248188 259152 270432 282034 293961 306220 318813 331746 345022 358648 372626 386962 401659 416724 432159 447970 464160 480736 497700 515058 532813 550972 569537 588514 607906 627720 647958 668626 689727 711268 733251 755682 778564 801904 825704 849970 |

## 40.75n^3 + 20n^2 – 70 |

16 130 298 523 812 1167 1594 2096 2680 3348 4106 4957 5908 6961 8122 9394 10784 12294 13930 15695 17596 19635 21818 24148 26632 29272 32074 35041 38180 41493 44986 48662 52528 56586 60842 65299 69964 74839 79930 85240 90776 96540 102538 108773 115252 121977 128954 136186 143680 151438 159466 167767 176348 185211 194362 203804 213544 223584 233930 244585 255556 266845 278458 290398 302672 315282 328234 341531 355180 369183 383546 398272 413368 428836 444682 460909 477524 494529 511930 529730 547936 566550 585578 605023 624892 645187 665914 687076 708680 730728 753226 776177 799588 823461 847802 872614 897904 923674 949930 |

### 5

First Type

### 6

Fourth Type

### 7

Sixth Type

### 8

Unknown due to glitch in Hack-O-Matic. Hack-O-Matic provides graphs for each experience function, but they may not be accurate. Do you want me to upload that graph's picture anyway?

Are these "hidden" experience functions notable enough to be added to the article somewhere? Thanks. Ultraflame 20:44, 12 October 2008 (UTC)

I dont understand any of this? Could you make it clearer for the average user to be able to read, if an average person sees that they wont be able to understand it, only smart people will --Guardian of Earth |SGMS 2010

- When a Pokémon gains experience it levels up. Different Pokémon level up at different rates, and take different amounts of experience to gain each level. Some Pokémon level up faster than others. The amount of experience a Pokémon needs to gain a level is determined by one of eight possible formulas. That's really the premise of the whole article. — Laoris
_{(Blah)}18:27, 4 December 2008 (UTC)

oh ok thank you, it was that last line "The amount of experience a Pokémon needs to gain a level is determined by one of eight possible formulas." I didnt really get till you explained it. I just thought they made the pokemon that way, i wasnt aware there was a formula, if this is in the article, can we have the easier to understand version, your version, underneath the complicated bit. --Guardian of Earth |SGMS 2010

- I'll add some clarification to the article later. — Laoris
_{(Blah)}18:36, 4 December 2008 (UTC)

## List of base experence yeald

Can someone add this in as a hide able table?- *unsigned comment from Eric the espeon (talk • contribs) **; massive amount of data hidden by trom.*

- Already in List of Pokémon by effort value yield. Ultraflame 00:42, 21 November 2009 (UTC)

No, that is EV yield.. The list I provided was base EXP yield. Quite a major difference there. Eric the espeon 17:57, 21 November 2009 (UTC)

- If you take a look at the article, there's a column marked "Exp.", which contains exactly the same data that you have provided. Confusing, I know. Ultraflame 19:06, 21 November 2009 (UTC)

Ok, fair enough. This article should probably link to that list then, no? Eric the espeon 21:59, 21 November 2009 (UTC)

## Negative EXP

According to the "medium slow" formula, the EXP for level 1 should be -54. This is exploited in the Pokémon Blue TAS. However there's no sign of this in the article. Was it fixed in later games? - *unsigned comment from Gyorokpeter (talk • contribs) *

- It was fixed as of Generation III at the latest, I believe. According to the article, "Due most likely to the issue of speed when using these formulas, the GBA games will simply use a lookup table for each value of any type instead of computing them. Because of this, these formulas are not actually part of the game mechanics." Ultraflame 05:41, 22 December 2009 (UTC)

## Experience gain in battle

The section on the experience gained in battle only mentions the total experience gained, and not how experience is spread throughout multiple participants in the battle. That information seems like a useful mechanic and should be appended by someone who can add it. --Naokohiro 19:21, 9 January 2010 (UTC)

- It is divided evenly among participants, unless some participants have EXP share or whatever. In this case, they receive their share plus the bonus from the held item. —
**darklordtrom**03:56, 10 January 2010 (UTC)- How is it divided among arbitrary amounts of Pokémon involved in the battle, and Pokémon with Exp. Share, including cases where Pokémon have both an Exp. Share and participated in the battle? There are many different cases. For example, when some Pokémon have Exp. Share and some don't, but some of the Pokémon with Exp. Share participated and some didn't, but also some Pokémon without Exp. Share that did participate, etc. --Naokohiro 04:41, 14 January 2010 (UTC)
- I don't know exactly how experience is divided among multiple Exp. Share holders (does each Pokémon with Exp. Share receive (1/(number of Exp. Shares + 1))*(total experience), or does each receive (1/2)*(total experience)*(1/number of Exp. Shares), or something else?), but the experience
**that is not allocated solely as a result of Exp. Share being held**is always divided evenly among the participants of the battle, regardless of whether or not those participants hold Exp. Share. Ultraflame 06:22, 14 January 2010 (UTC)

- I don't know exactly how experience is divided among multiple Exp. Share holders (does each Pokémon with Exp. Share receive (1/(number of Exp. Shares + 1))*(total experience), or does each receive (1/2)*(total experience)*(1/number of Exp. Shares), or something else?), but the experience

- How is it divided among arbitrary amounts of Pokémon involved in the battle, and Pokémon with Exp. Share, including cases where Pokémon have both an Exp. Share and participated in the battle? There are many different cases. For example, when some Pokémon have Exp. Share and some don't, but some of the Pokémon with Exp. Share participated and some didn't, but also some Pokémon without Exp. Share that did participate, etc. --Naokohiro 04:41, 14 January 2010 (UTC)

## Switching???

I'll give an example.

Say I have a Charizard out, and the opponent has Venusaur. The opponent switches to Blastoise, and later I switch to Raichu. If the opponent switches back to Venusaur, and I KO it, will my Charizard still gain exp? **-** ^{Axxonn}the_{Awesometrainer} 20:59, 4 May 2010 (UTC)

- No, at least not in my experience. The Pokémon must face the Pokémon since it has last been sent out from its Poké Ball. Werdnae (talk) 21:40, 4 May 2010 (UTC)

## Errors with formulas?

I was just double-checking the erratic output based on the formula given, when I realized that the given formula is impossible, in programming terms. Specifically, the game would never output two values for levels 50, 68, and 98, as the current formula shows it does. So I checked to see what the correct distribution of the formulas was, and came up with the following: level 50 could go either way, as both formulas it is attributed to result in the same output, level 68 is calculated based on the second formula given, and level 98 is calculated on the final formula. In other words, the actual division of the formulas should be something along the lines of the first applying to levels below or equal to 50, the second applying to levels greater than 50 but less than or equal to 68, the third applying to levels greater than 68 but less than to 98 (or, to keep similar formatting, apply to levels greater than 68 but less than or equal to 97), and the final one applying to levels greater than or equal to 98 (or, to keep formatting, apply to levels greater than 97). Glitchfinder 03:31, 6 May 2010 (UTC)

It would also appear that quite a bit has been left out of the fluctuating piecewise function. Specifically, it would appear that the formula used for levels one through 14 will change based on the level modulo 3, resulting in three different yet very similar formulas for these levels. The middle levels, from 15 to 34, remain with the same formula that is given. However, it would appear that there are two separate formulas used for levels 35 to 100, determined by the level modulo 2. Here is the code I was using to test the function, which is written in Ruby:

test.fluctuating[1] = 0 for i in 2...101 if i >= 1 && i < 15 && i % 3 == 0 val = ((i.to_f ** 3.0) * ((24.0 + ((i.to_f) / 3.0)) / 50.0)) elsif i >= 1 && i < 15 && i % 3 == 1 val = ((i.to_f ** 3.0) * ((24.0 + ((i.to_f - 1.0) / 3.0)) / 50.0)) elsif i >= 1 && i < 15 && i % 3 == 2 val = ((i.to_f ** 3.0) * ((24.0 + ((i.to_f + 1.0) / 3.0)) / 50.0)) elsif i >= 15 && i < 35 val = ((i.to_f ** 3.0) * ((14.0 + i.to_f) / 50.0)) elsif i >= 35 && i <= 100 && i % 2 == 0 val = ((i.to_f ** 3.0) * ((32.0 + (i.to_f / 2.0)) / 50.0)) elsif i >= 35 && i <= 100 && i % 2 == 1 val = ((i.to_f ** 3.0) * ((32.0 + ((i.to_f - 1.0) / 2.0)) / 50.0)) end test.fluctuating[i] = val.truncate end

Please note that the code is given as a demonstration of how the formulas are chosen, and does not include the necessary setup for the test variable. I don't know the Wikipedia math functions well enough to replace the image, so it would be a good idea for someone else to do it instead. Glitchfinder 05:17, 6 May 2010 (UTC)

- I believe that the modulo operator business is already covered in the formulas, using the floor function symbol (looks a little like square brackets). But I do agree that the erratic functions' domains should be clarified as you said. Ultraflame 05:25, 6 May 2010 (UTC)
- That would certainly explain the problem. There should probably be a note stating that those values are actually encased in a floor function, and not simply placed within brackets. (I had to look quite closely to see that they were in fact the floor function symbols, and not simply brackets, like I had assumed they were) Glitchfinder 05:47, 6 May 2010 (UTC)

## Understanding the formulas

Could anyone tell me what is ment with "N" in the formulas?
I can't find it anywhere on the page. - *unsigned comment from Ragnearoa (talk • contribs) *

- "n" generally means "number" when used in equations as a variable, in this case... I believe the "n" stands for the base experience given out by a Pokemon. ▫▫
**ティナ**^{♫★}15:21, 20 May 2010 (UTC)- "n" actually represents the level of the Pokémon. "e(n)" is therefore the number of Exp. Points a Pokémon needs to get from level 1 to level "n". Ultraflame 01:21, 21 May 2010 (UTC)

## Erratic formula

The erratic formula's piecewise functions are defined inclusively in all inequalities, and thus overlap.

The left formula is how I believe it should be, the right is the current one. -- Pokey 07:38, 27 May 2010 (UTC)